

Paper Code: BCA 303

Paper ID: 20303

Paper: Computer Graphics &

Multimedia Applications

UNIT – I
Introduction: The Advantages of Interactive Graphics,

Representative Uses of Computer

Graphics, Classification of Applications, Development of

Hardware and Software for

Computer Graphics, Conceptual Framework for Interactive

Graphics, Overview, Scan

Converting Lines, Scan Converting Circles, Scan

Converting Ellipses.

Graphics Hardware
Hardcopy Technologies, Display Technologies, Raster-

Scan Display Systems, The Video

Controller, Random-Scan Display Processor, Input Devices

for Operator Interaction, Image

Scanners, working exposure on graphics tools like Dream

Weaver, 3D Effects etc.

Clipping
Southland-Cohen Algorithm, Cyrus-Beck Algorithm,

Midpoint Subdivision Algorithm

UNIT – II

Geometrical Transformations
2D Transformations, Homogeneous Coordinates and

Matrix Representation of 2D Transformations,

Composition of 2D Transformations, The Window-to-

Viewport Transformation, Efficiency, Matrix

Representation of 3D Transformations, Transformations as

a Change in Coordinate System.

UNIT – III

Representing Curves & Surfaces
Polygon Meshes, Parametric Cubic Curves, Quadric

Surfaces. Solid Modeling Representing Solids,

Regularized Boolean Set Operations, Primitive Instancing,

Sweep Representations, Boundary Representations, Spatial

Partitioning Representations, Constructive Solid Geometry,

Comparison of Representations, User Interfaces for Solid

Modeling.

UNIT – IV
Three Dimensional Viewing: Introduction, Representation

of Three-dimensional objects, Projections, Parallel

projections: Orthographic Projections, Oblique Projections.

Perspective Projection, Three dimensional clipping, Three-

dimensional Cohen-Sutherland clipping algorithm. Hidden

Surface Removal: Depth-Buffer(z-buffer) method, Depth-

sorting Method(Painter’s algorithm

UNIT-I

Computer graphics tells us that what the actual workings of

graphics are. Computer Graphics remains one of the most

existing and repladly growing computer field. Computer

Graphics as the pictorial representation or graphical

representation of a computer

Application of computer graphics:

(1) Computer – Aided Design

(2) Presentation Graphics

(3) Computer Art

(4) Entertainment

(5) Education and Training

(6) Graphics provides one of the most

natural means of communicating with a

computer.

(7) Interactive computer graphics permits

extensive, high-bandwidth user-

computer interaction.

Representative Uses of Computer Graphics

Computer graphics is used today in many

different areas of industry, business, government,

education, and entertainment.

• User interfaces: GUI, etc.

• Business, science and technology:

histograms, bar and pie charts, etc.

• Office automation and electronic

publishing: text, tables, graphs,

hypermedia systems, etc.

• Computer-aided design (CAD): structures

of building, automobile bodies, etc.

• Simulation and animation for scientific

visualization and entertainment: flight

simulation, games, movies, virtual

reality, etc.

• Art and commerce : terminals in public

places such as museums, etc.

• Cartography: map making

• Simulation and animation for scientific

visualization and entertainment.

• Multimedia textbooks

Classification of Applications

• Paint programs: Allow you to create

rough freehand drawings.

• Animation software: Enables you to chain

and sequence a series of images to simulate

movement. Each image is like a frame in a

movie

• CAD software: Enables architects and

engineers to draft designs. It is the acronym

for computer-aided design. A CAD system

is a combination of hardware and software

that enables engineers and architects to

design everything from furniture to

airplanes.

• Desktop publishing: Provides a full set of

word-processing features as well as fine

control over placement of text and

graphics, so that you can create

newsletters, advertisements, books, and

other types of documents

• business software: enables users to create

highly stylized images for slide shows and

reports. The software includes functions for

creating various types of charts and graphs

and for inserting text in a variety of fonts.

Conceptual Framework for Interactive Graphics.

The high-level conceptual framework shown here

can be used to describe almost any interactive

graphics system

The three major parts of the framework are:

Application Modeling

Calculating what is to be

displayed

Displaying the Model

Calling the graphics API

routines

Interaction Handling

Handling user interaction,

which will change the model,

and therefore the display.

typically an event driven loop

Scan Converting Lines

Converting the geometric definition of a primitive form

into a set of pixels that make up the primitive in the image

space. This conversion task is scan conversion.

Types of Scan Conversion

1. Digital Differential (DDA) Algorithm

2. Bresenham’s Line Algorithm

DDA algorithm is an incremental scan conversion method.

• Incremental scan-conversion method

• Faster than the direct use of the line equation

• a floating point operation is still required

• The line drifts away from the original line when

 the line is relatively long

AN ALGORITHM TO DRAW A LINE

1. Compute

dx = x2-x1 dy = y2-y1

2. If abs(dx) > abs(dy) then steps = abs(dx)

3. Else steps = abs(dy)

4 Plot a point at (x, y)

5. xinc = dx / steps;

6. yinc = dy/steps;

7. x = x1 and y = y1

8. Plot a point at (x, y)

9. k=1

10. if k = steps , stop

11. x = x +xinc

12. y = y + yinc

13. Plot a point at (x, y)

14. k = k+1

15. Go to step 7

BRESENHAM LINE ALGORITHM

An accurate and efficient raster line generating algorithm,

the Bresenham's line-drawing algorithm. This algorithm

was developed by Jack E. Bresenham in 1962 at IBM.

1. Highly efficient incremental method

2. Produces mathematically correct results using

simple calculations

Bresenham’s Line Drawing Algorithm for m <1 :

(1) Input the two line endpoints & store the left end point in

(x0, y0).

(2) Load (x0, y0) into frame buffer that is plot the first

point.

(3) Calculate constants ∆x, ∆y, 2∆y and 2∆y - 2∆x and

obtain the

starting value for the decision parameter as : P0 = 2∆y -

∆x.

(4) At each xk along the line starting at k = 0, perform the

followingtest if Pk < 0 the next point to plot is (xk+1 , yk)

and Pk+1 = Pk + 2∆y

Otherwise the next point to plot is (xk+1 , yk+1) and Pk+1

= Pk +2∆y -

2∆x.

(5) Repeat step 4 ∆x times.

Scan Converting Circles

circle is a symmetrical figure , eight points can be

plotted for each value that the algorithm

calculates

A circle is a set of points that are at a given

distance r form the center position (xc, yc). This

distance relationship is given as :

(x – xc)2 + (y – yc)2 – r2 = 0 This equation is

used to calculate the position of points along the

circle path by moving in the x direction from (xc

- r) to (xc + r) and determining the corresponding

y values as :

y = yc 2 2 c (x - x) – r

Algorithm :

(1) Input radius r and circle center (xc, yc) and obtain the

first point on

circumference of a circle centered on origin (x0, y0) = (0,

r)

(2) Calculate the initial value of the decision parameter as

: P0 =5/4- r

(3) At each xk position, starting at k = 0 if Pk < 0 the next

point alongthe circle is (xk+1, yk) and Pk+1 = Pk + 2xk+1

+ 1, otherwise the next point along the circle is (xk + 1, yk

- 1) and Pk+1 = Pk + 2xk+1 + 1 –

2yk+1 where 2xk+1 = 2xk + 2 & 2yk+1 = 2yk – 2.

(4) Determine symmetry points in other seven octants.

(5) Move each calculated pixel position (x, y) onto the

circular path centered on (xc, yc) & plot coordinate values

x = x + xc & y = y + yc.

(6) Repeat step (3) through (5) until x ≥ y.

Scan Converting Ellipses

An ellipse is defined as a set of points such that the sum of

distances from two fixed points (foci) is same for all points

given a point P = (x, y), distances are d1 & d2, equation is :

d1 + d2 = constant

In terms of local coordinates

F1 = (x1, y1) & F2 (x2, y2)

Display Technologies

In some graphics systems a separate processor is used to

interpret the commands in the display file. Such a

Raster Display System:

• Interactive raster graphics employs

several processing units

• Apart from CPU, a special purpose

processor called video controller or

display controller -> control operation of

the display device

• Simple raster graphics system

Random Scan Display:

• The random scan display system with

display processor.

• It except the frame buffer.

• In random scan display no local memory is

provided for scan conversion algorithm.

Video Controller:

• Fixed area of system memory reserved

for frame buffer

• Video controller given direct access to

frame buffer to refresh the screen

• Coordinator origin is defined at lower

left corner

• Scan lines labeled from ymax at the top of

the screen to 0 at the bottom

1. Cohen- Sutherland Algorithm (PPT)

6/2215 – Clipping

Clip Rectangle

Cohen-Sutherland Line Clipping in 2D

7/2215 – Clipping

Cohen-Sutherland Algorithm

� If we can neither trivially
accept or reject, then we do
divide-and-conquer

� Subdivide line into two
segments and test again

Clip

rectangle

D

C
B

A

E

F

G

H

I

� Use a clip edge to cut line

� Use outcodes to choose which edge is crossed
� The bits that are different between outcodes will tell us which edge to examine

� Pick an order for checking edges: top – bottom – right – left

� Compute the intersection point
� Clip edge will be axis-aligned, so we can fix either the x or the y

� Can substitute into the line equation

� Iterate for the newly created line segment, might need multiple passes
(e.g., E-I at H)

Cyrus-Beck Algorithm (PPT)

11/2215 – Clipping

Cyrus-Beck / Liang-Barsky Parametric

Line Clipping

Image Scanners

Image Processing is any form of signal, processing for

which Input is an Image such as photographs or

frames of video, the output of Image processing can be

either an Image or a set of characteristics or

parameters related to the Image.

UNIT-II

2D Transformations

Moving of an object to one place in Window area to

another place is called a Transformation.

 Transformation is to change the′ object’s

• Position (translation)

• Size (scaling)

• Orientation

• rotation)

• Shapes (shear)

Rotation:

• Rotation is applied to an object by

repositioning it along a circular path in the

XY plane

• Positive values of theta for counter

clockwise rotation

• Negative values of theta for Clockwise

rotation

• To generate a rotation , we specify

Rotation angle theta

Pivot point (Xr,Yr)

Scaling:

• Scaling alters the size of an object .

• Uniform scaling means this scalar is the

same for all components.

• Non –Uniform scaling different per

component

• Operation can be carried out by

multiplying each of it component by a

scalar

Reflection: A reflection is a transformation that produces

a mirror image of an object

• Reflection along x axis

• Reflection along y axis

• Reflection relative to an axis perpendicular

to the xy plane and passing through the

coordinate origin

• Reflection of an object relative to

Shearing: A transformation that distorts the shape of an

object such that the transformed object appears as if the

object were composed of internal layers that had been

caused to slide over each other.

PPT

2D Transformation

•Translation

)','(' tomove),(yxPyxP

y

x

dyy

dxx

+=

+=

'

'

),('

 ,
'

'
' ,

yx

y

x

ddTPP

d

d
T

y

x
P

y

x
P

+=

=

=

=

P(x, y)

P’(

y

dx

dy

April 2010 2

2D Translation

P

′P

T

x

y
 ,

, ,

x y

x

y

x x t y y t

tx x

ty y

′ ′= + = +

′
′= = = ′

′ = +

P P T

P P T

42

2D Transformation

•Scaling

axis thealong by and

axis thealong by Scale

ys

xs

y

x

ysy

xsx

y

x

⋅=

⋅=

'

'

PssSP

y

x

s

s

y

x

yx

y

x

⋅=

⋅

=

),('

0

0

'

'

x

y

P0(x0, y0)

P1(x1, y1)

y1
1

2

y0

y1

y0
1
2

x1
1

2
x0

1

2
x1 x0

April 2010

2D Scaling

x
S

y
S

,

0

0

x y

x

y

x x s y y s

sx x

sy y

′ ′= ⋅ = ⋅

′
= ′

′ = ⋅P S P

x

y

(),f fx y

(

(

(

1

1

x f x

y f y

f

x x s x s

y y s y s

′ = ⋅ + −

′ = ⋅ + −

′ = ⋅ + ⋅P P S P 1- S

(Scaling about a fixed point ,x y

2D Transformation

•Rotation

origin about the anglean through Rotate θ

θθ

θθ

cossin'

sincos'

⋅+⋅=

⋅−⋅=

yxy

yxx

PRP

y

x

y

x

⋅=

⋅

 −
=

)('

cossin

sincos

'

'

θ

θθ

θθ

P

P’(x’, y’)

y

θ

April 2010 3

2D Rotation

x

y

rx

ry
θ

()

Rotation in angle about a

pivot (rotation) point , .
r r

x y

θ

x

y

θ

(),
r r

x y

(),x y′ ′

(),x y

() ()

() ()

()

cos sin

sin cos

cos sin

sin cos

r r r

r r r

r r

x x x x y y

y y x x y y

θ θ

θ θ

θ θ

θ θ

′ = + − − −

′ = + − + −

′ = + ⋅ −

−
=

P P R P P

R

44

2D Transformation

•Derivation of the rotation equation

θφθφ

θφ

θφθφ

θφ

cossinsincos

)sin('

sinsincoscos

)cos('

⋅⋅+⋅⋅=

+⋅=

⋅⋅−⋅⋅=

+⋅=

rr

ry

rr

rx

θθ

θθ

cossin'

sincos'

⋅+⋅=

⋅−⋅=

yxy

yxx

P(x, y)

P’(x’, y’)

x

y

θ

φ

r

φ

φ

sin

cos

⋅=

⋅=

ry

rx

rcosφ

rsinφ

rcos(φ+θ)

rsin(φ+θ)

Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Shear

• Helpful to add one more basic transformation

• Equivalent to pulling faces in opposite directions

Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Shear Matrix

Consider simple shear along x axis

x’ = x + y cot θ
y’ = y

z’ = z

 θ

1000

0100

0010

00cot 1

H(θ) =

Homogeneous Coordinates and Matrix Representation

of 2D Transformations,

PPT

Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Homogeneous Coordinates

The general form of four dimensional homogeneous
coordinates is

p=[x y z w] T

We return to a three dimensional point (for w

x←x/w

y←y/w

z←z/w

If w=0, the representation is that of a vector

Note that homogeneous coordinates replaces points in

three dimensions by lines through the origin in four

dimensions

Angel: Interactive Computer Graphics 3E © Addison-Wesley 2002

Homogeneous Coordinates
and Computer Graphics

•Homogeneous coordinates are key to all
computer graphics systems

- All standard transformations (rotation,
translation, scaling) can be implemented by

matrix multiplications with 4 x

- Hardware pipeline works with

representations

- For orthographic viewing, we can maintain
for vectors and w=1 for points

- For perspective we need a perspective division

Composite Transformations

1. Sequence of composite transformation matrix and

transformations could be setup by the matrix

product of the individual transformations

2. Also as Concatenation or Composition of

Matrices

Compositing Transformations

• Does order matter?

� Case 1: translate by (–2, 0), scale by (2, 2)

� Case 2: scale by (2, 2), translate by (

� Begin: red, 1st transform: purple

Y

X

1,1 3,1

2,3

Y

Case 1(translate then scale)

Compositing Transformations

• Does order matter?

� Case 1: translate by (–2, 0), scale by (2, 2)

� Case 2: scale by (2, 2), translate by (

� Begin: red, 1st transform: purple

Y

X

1,1 3,1

2,3

Y

Case 1(translate then scale)

-1,1

0,3

-1,1

0,6

-2,2 2,2 0,2

Composition Example

STPP =′

TSPP =′

100

020

002

=

 −

100

010

201

 −

100

010

201

=

0

0

2

100

020

002

In general, transformations are not commutative

Window-to-Viewport Transformation

 Window area on which object to be display and

view port is generated in the window area and

finally display in window area after selection of a

particular object that should be consider as in

view port.

Need to transform points from “world” view (window) to

the screen view (viewport)

� Maintain relative placement of points (usually)

� Can be done with a translate-scale-translate sequence

Window-to-Viewport Transform

x

y

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 1 2 3 4

u

v

0 10 20 30 40 50 60 70 80

10

20

30

40

50

60

0

Window (“world”) Viewport (screen)

• “Window” refers to the area in “world space” or “world
coordinates” that you wish to project onto the screen

• Location, units, size, etc. are all determined by the application,
and are convenient for that application

• Units could be inches, feet, meters, kilometers, light years, etc.

• The window is often centered around the origin, but need not be

• Specified as (x,y) coordinates

Window

x

y

-3

-2

-1

0

1

2

3

-4 -3 -2 -1 1 2 3 4

Window (“world”)

(xmin, ymin)

(xmax, ymax)

• You can have multiple viewports

� They can contain the same view of a window, different views of the same

window, or different views of different windows

Viewport (cont)

v

40

50

60

Viewport (screen)

UNIT – III

Representing Curves & Surfaces

Polygon Meshes, Parametric Cubic Curves

Solid Modeling
Representing Solids, Regularized Boolean Set

Operations, Primitive Instancing, Sweep

Representations, Boundary Representations, Spatial

Partitioning Representations, Constructive Solid

Geometry, Comparison of Representations, User

Interfaces for Solid Modeling.

polygon mesh

• it is a collection of vertices

• it is collection of edges and

• collection of faces

• it is a large sub-field of computer graphics

and geometric modeling

• operations performed on meshes may

include Boolean logic, smoothing,

simplification, and many others

Parametric Cubic Curves

Curves and surfaces can have explicit, implicit,

and parametric representations. Parametric

representations are the most common in computer

graphics.

• A parametric cubic curve is to be fitted to

interpolate four points. The first and last

points are to be at u=0 and u=1. The other

two points are at u=1/3 and u=2/3,

respectively. Find the equation of the curve

in the form P(u)=U
T

[M
P
]B.

• The geometric matrix G of a parametric

cubic curve defines a straight line

• A Bezier cubic curve obtained by a set of

points.

• A set of control points explain what happen

to a Bezier segment when two of the

control points are coincident.

Solid Modeling

a) Primitive Instancing

• It is set of Primitive 2D/3D solid shapes

• Similar to parameterized object

• A family with few difference in members

• Relatively complex object

• Without combing object

b) Sweep Representations

• Sweeping a object in 2D and 3D

• Translational sweep

• Rotational sweep

• General sweep

c) Boundary Representations

• Object description in terms of vertices,

faces and edges

• Some b-reps are restricted to planer ,

polygon etc...

d) Spatial Partitioning Representations

• A solid is decomposed into a collection of

adjoin nonintersecting solids

• 1-Cell decomposition

• 2-spatial occupancy enumeration

• 3-Octress

• 4- Binary space –portioning trees

• Unambiguous but not necessary unique

e) Constructive Solid Geometry

• Operators at the internal nodes and easy

primitive at the leaves

• Not Unique

• Deleting and adding replacing –modifying

subtree etc..

f) Comparison of Representations

• Accuracy

• Domain

• Uniqueness

• Closure

• Compactness and efficiency

UNIT – IV

Three Dimensional Viewing: Introduction, Representation

of Three-dimensional objects, Projections, Parallel

projections: Orthographic Projections, Oblique Projections.

Perspective Projection, Three dimensional clipping, Three-

dimensional Cohen-Sutherland clipping algorithm. Hidden

Surface Removal: Depth- Buffer(z-buffer) method, Depth-

sorting Method(Painter’s algorithm)

Projections

Projection is 'formed' on the view plane (planar geometric

projection) rays (projectors) projected from the center of

projection pass through each point of the models and

intersect projection plane. Since everything is synthetic, the

projection plane can be in front of the models, inside the

models, or behind the models..

Parallel:

o center of projection infinitely far from

view plane

o projectors will be parallel to each other

o need to define the direction of

projection (vector)

o 2 sub-types

� orthographic - direction of

projection is normal to view

plane

� oblique - direction of

projection not normal to view

plane

o better for drafting / CAD applications

Orthographic projection (or orthogonal projection)

• Means of representing a three-dimensional object

in two dimensions.

• It is a form of parallel projection, where all the

projection lines are orthogonal to the projection

plane, resulting in every plane of the scene

appearing in affine transformation on the viewing

surface.

• It is further divided into multiview orthographic

projections and axonometric projections which

type of projection is used depends on the needs of

the user - whether the goal is the mathematically

correct depiction of length and angles, or a

realistic looking image of the object

Perspective:

o center of projection finitely far from

view plane

o projectors will not be parallel to each

other

o need to define the location of the

center of projection (point)

o classified into 1, 2, or 3-point

perspective

o more visually realistic - has perspective

foreshortening (objects further away

appear smaller)

Oblique projection

• It is a simple type of technical drawing of

graphical projection used for producing pictorial,

two-dimensional images of three-dimensional

objects.

• Types

• it projects an image by intersecting

parallel rays (projectors)

• From the three-dimensional source

object with the drawing surface

(projection plane).

Hidden-Surface Removal

� We now know which pixels contain which

objects, however since some pixels may contain

two or more objects we must calculate which of

these objects is visible and which are hidden

� Hidden surface removal is generally

accomplished using the Z-buffer algorithm

� In this algorithm, we set aside a two-dimensional

array of memory (the Z-buffer) of the same size

as the screen (#rows x #columns)

� This is in addition to the buffer we will use to

store the values of pixels which will be displayed

(color values)

� The Z-buffer will hold values which are depths

(or z-values)

� The buffer is initialized so that each element has

the value of the far clipping plane (the largest

possible z-value after clipping has been

performed)

� The other buffer is initialized so that each

element contains a value which is the background

color

� Now for each polygon we have a set of pixel

values which that polygon covers

� For each one of these pixels, we compare its

interpolated depth (z-value) with the value of the

corresponding element already stored in the Z-

buffer

� If this value is less than the previously

stored value, the pixel is nearer the

viewer than previously encountered

pixels

� Replace the old value of the Z- buffer

with the new, interpolated value and

replace the old value of the other buffer

with the value (color) of the pixel

� Repeat for all polygons in the image

Z Buffer

The easiest way to achieve hidden-surface removal is to use

the depth buffer (sometimes called a z-buffer). A depth

buffer works by associating a depth, or distance from the

viewpoint, with each pixel on the window. Initially, the

depth values for all pixels are set to the largest possible

distance, and then the objects in the scene are drawn in any

order.

Graphical calculations in hardware or software convert

each surface that's drawn to a set of pixels on the window

where the surface will appear if it isn't obscured by

something else. In addition, the distance from the eye is

computed. With depth buffering enabled, before each pixel

is drawn, a comparison is done with the depth value already

stored at the pixel.

If the new pixel is closer to the eye than what's there, the

new pixel's colour and depth values replace those that are

currently written into the pixel. If the new pixel's depth is

greater than what's currently there, the new pixel would be

obscured, and the colour and depth information for the

incoming pixel is discarded.

Z Buffer in OpenGL

To use depth buffering in OpenGL, you need to enable

depth buffering. This has to be done only once. Each time

you draw the scene, before drawing you need to clear the

depth buffer and then draw the objects in the scene in any

order.

 Scan-Line Algorithm

The scan-line algorithm is another image-space algorithm.

It processes the image one scan-line at a time rather than

one pixel at a time. By using area coherence of the

polygon, the processing efficiency is improved over the

pixel oriented method

Painter's algorithm

The idea behind the Painter's algorithm is to draw polygons

far away from the eye first, followed by drawing those that

are close to the eye. Hidden surfaces will be written over in

the image as the surfaces that obscure them are drawn.

The concept is to map the objects of our scene from the

world model to the screen somewhat like an artist creating

an oil painting. First she paints the entire canvas with a

background colour. Next, she adds the more distant objects

such as mountains, fields, and trees. Finally, she creates the

foreground with "near" objects to complete the painting.

Our approach will be identical. First we sort the polygons

according to their z-depth and then paint them to the

screen, starting with the far faces and finishing with the

near faces.

The algorithm initially sorts the faces in the object into

back to front order. The faces are then scan converted in

this order onto the screen. Thus a face near the front will

obscure a face at the back by overwriting it at any points

where their projections overlap. This accomplishes hidden-

surface removal without any complex intersection

calculations between the two projected faces.

The algorithm is a hybrid algorithm in that it sorts in object

space and does the final rendering in image space.

The basic algorithm :

1. Sort all polygons in ascending order of maximum

z-values.

2. Resolve any ambiguities in this ordering.

3. Scan convert each polygon in the order

generated by steps (1) and (2).

Reference:

Book Reference

• Himalaya publication: Computer Graphics,

Sumit chahan

• D. Hearn & Baker: Computer Graphics

with OpenGL, Pearson Education, Third

Edition

Web Reference

1. http://www.slideshare.net/KRvEsL/solid-

modeling

2. http://web.iitd.ac.in/~pmpandey/RP_html_pdf/ass

ignment%20Parametric%20Cubic%20and%20Be

zier%20Curve.pdf

3. http://www.bcanotes.com/Online/Computer%20

Graphics/2D%20Transformation.html

4. http://ecomputernotes.com/computer-

graphics/two-dimensional-

transformations/what-is-transformation-type-

of-transformation

5. http://askguru.net/d/2d-transformation-in-

computer-graphics-ppt-download

6. https://sites.google.com/site/assignmentssolved/sy

stem/app/pages/search?scope=search-

site&q=Antialiasing

7. http://www.slideshare.net/KRvEsL/solid-

modelinghttp://www.slideshare.net/KRvEsL/solid

-modeling

8. http://www.google.co.in/search?q=bresenham+li

ne+drawing+algorithm&source=lnms&tbm=isc

h&sa=X&ei=mnbSUYWsJYTkrAfvpIHwAQ&ved

=0CAcQ_AUoAQ&biw=1024&bih=587

9. http://www.cs.uic.edu/~jbell/CourseNotes/Comp

uterGraphics/Projections_Viewpoints.html

10. http://www.cs.cityu.edu.hk/~helena/cs31622000

B/Chap8Notes.pdf

11. http://www.cs.sun.ac.za/~lvzijl/courses/rw778/gr

afika/OpenGLtuts/Big/graphicsnotes009.html

12. http://en.wikipedia.org/wiki/Orthographic_projec

tion

13. http://en.wikipedia.org/wiki/Oblique_projection

