
 

B.A. (H)-Economics  

Sem- 2
nd 

Subject- Statistical Methods-II ( BA ECO 104) 

 

Syallbus 

Unit- 1: Theory of Distribution 

Introduction to probability distribution- Normal, Bernoulli, Poiusson- Negative,  Binomial, 

Uniform, Chi Square, Exponential Distribution, Central Limit Theorem. 

Unit- II: Sampling 

Census and sample survey, Sample Selection Methods, Simple Random Sampling- With and 

without replacement, Systematic sampling, Properties of estimates and their variances. 

Unit-III: Point and Interval Estimation 

Point estimation, properties of estimators, Cramer Rao inequality, Methods of estimation and 

their properties, Introduction to methods of moments, Least Squares, Maximum likelihood- 

interval estimation, Confidence interval. 

Unit –IV: Hypothesis Testing 

Null and alternative hypothesis- critical region, Type I and Type II error, level of significance, p-

value, Power of test- ANOVA, Inferences based on mean and variance- One way classification. 

 

 

 

 

 

 



 

Unit 1: Probability Distribution 

Introduction to Probability Distributions 

 Probability distributions describe the probability of observing a particular event. Let X be a 

random variable. We would like to specify the probabilities of events such as {X = x} and {a ≤ X 

≤ b}. If we can specify all probabilities involving X, we say that we have specified the 

probability distribution of X. Probability distributions are generally divided into two classes. 

 A discrete probability distribution (applicable to the scenarios where the set of possible 

outcomes is discrete, such as a coin toss or a roll of dice) can be encoded by a discrete list of the 

probabilities of the outcomes, known as a probability mass function.  

On the other hand, a continuous probability distribution (applicable to the scenarios where the 

set of possible outcomes can take on values in a continuous range (e.g. real numbers), such as the 

temperature on a given day) is typically described by probability density functions (with the 

probability of any individual outcome actually being 0). The normal distribution is a commonly 

encountered continuous probability distribution. 

The Binomial Distribution 

The Binomial Distribution Now we are ready to write down an expression for the probability 

distribution that describes the likelihood of r events (e.g. heads) occurring in a total of m events 

(e.g. coin flips) where the probability of an r-event occurring is p while the probability of it not 

occurring is (1 − p). Since the individual events occur independently, the probability of a subset 

of r events amongst many m is the product of individual probabilities. If r occur, then m − r don’t 

and the probability is p 
r
 (1 − p) 

m−r
. For the total probability of a particular event occurring (e.g. 

2 heads), we multiply the probability that the event occurs by the number of ways that event can 

occur. The complete formula for the probability distribution is then given by  

P
r
 = m! divided by (m − r)!r!  multiplied by (1 − p) 

m−r
 p

 r
 .  



 

 This distribution is called the binomial distribution. It describes the probability that r events 

occur among a total of m independent events. Note that it is a discrete distribution; it is defined 

only at integral values of the variable r. 

Properties of Binomial Distribution 

1. The expectation is EX = np. 

2. The variance of X is Var(X) = np(1 − p). 

3. The probability generating function of X is G(z) = (1 − p + zp)
n 

 

Bernoulli Distribution  

We say that X has a Bernoulli distribution with success probability p if X can only assume the 

values 0 and 1, with probabilities P(X = 1) = p = 1 − P(X = 0) .  

Following are some properties:  

1. The expectation is EX = 0P(X = 0)+1P(X = 1) = 0×(1−p)+1×p = p. 

 2. The variance is Var(X) = EX2−(EX)2 = EX−(EX)2 = p−p2 = p(1−p). (Note that X2 = X).  

3. The PGF is given by G(z) = z0(1 − p) + z1p = 1 − p + zp. 

Poisson Distribution 

 A random variable X for which P(X = x) = λx divided by x!multiplied by e
−λ

, x = 0, 1, 2,... 

(for fixed λ > 0) is said to have a Poisson distribution. We write X ∼ Poi(λ). The Poisson 

distribution is used in many probability models and may be viewed as the “limit” of the Bin(n, 

µ/n) for large n. 

1. The PGF is derived as: G(z)=e−λ(1−z) . 



 

 2. It follows that the expectation is EX = G (1) = λ. The intuitive explanation is that the mean 

number of successes of the corresponding coin flip experiment is np = n(λ/n) = λ.  

3. The variance is n(λ/n)(1 − λ/n) → λ.  For the Poisson distribution the variance and expectation 

are the same.  

Exponential Distribution  

A random variable X with probability density function f, given by f(x) = λ e−λ x
, x ≥ 0 

is said to have an exponential distribution with parameter λ. We write X ∼ Exp(λ). The 

exponential distribution can be viewed as a continuous version of the geometric distribution. The 

exponential distribution is often used to model the failure time of manufactured items in 

production lines, say, light bulbs. If X denotes the (random) time to failure of a light–bulb of a 

particular make, then the exponential distribution postulates that the probability of survival of the 

bulb decays exponentially fast – to be precise, P(X > x) = e −λ x. Notice that the bigger the value 

of λ, the faster the decay. This indicates that for large λ the average time of failure of the bulb is 

smaller. 

Chi Square Distribution  

Definitions 

Chi-square distribution  

A distribution obtained from the multiplying the ratio of sample variance to population 

variance by the degrees of freedom when random samples are selected from a normally 

distributed population  

Contingency Table  

Data arranged in table form for the chi-square independence test  

Expected Frequency  

The frequencies obtained by calculation.  

Goodness-of-fit Test  

A test to see if a sample comes from a population with the given distribution.  



 

Independence Test  

A test to see if the row and column variables are independent.  

Observed Frequency  

The frequencies obtained by observation. These are the sample frequencies.  

 

 

A random variable X is said to have a chi-square distribution with n (∈ {1, 2,...}) degrees of 

freedom if X ∼ Gam(n/2, 1/2). We write X ∼ χ2 n. 

We mention a few properties of the Γ-function. 1. Γ(a + 1) = a Γ(a), for a ∈ R+. 2. Γ(n)=(n − 1)! 

for n = 1, 2,.... 3. Γ(1/2) = √π. Chi-square distribution is encountered when we deal with 

collections of values that involve adding up squares. Variances of samples require us to add a 

collection of squared quantities and thus have distributions that are related to chi-square 

distribution. If we take each one of a collection of sample variances, divide them by the known 

population variance and multiply these quotients by (n – 1), where n means the number of items 

in the sample, we shall obtain a chi-square distribution. Thus,( σ2s/ σ 2 p) ( n− 1) would have the 

same distribution as chi-square distribution with (n – 1) degrees of freedom. Chi-square 

distribution is not symmetrical and all the values are positive. One must know the degrees of 

freedom for using chi-square distribution. This distribution may also be used for judging the 

significance of difference between observed and expected frequencies and also as a test of 

goodness of fit. The generalised shape of χ2 distribution depends upon the d.f.  

Uniform Distribution  

We say that a random variable X has a uniform distribution on the interval [a, b], if it has density 

function f, given by 

 f(x) = b − a , a ≤ x ≤ b . We write X ∼ U[a, b]. X can model a randomly chosen point from 

the interval [a, b], where each choice is equally likely. 

Negative Binimial Distribution 



 

In probability theory and statistics, the negative binomial distributionis a discrete probability 

distribution of the number of successes in a sequence of independent and identically 

distributed Bernoulli trials before a specified (non-random) number of failures (denoted r) 

occurs. For example, if we define a 1 as failure, all non-1s as successes, and we throw 

a dice repeatedly until the third time 1 appears (r = three failures), then the probability 

distribution of the number of non-1s that had appeared will be a negative binomial. 

Suppose there is a sequence of independent Bernoulli trials. Thus, each trial has two potential 

outcomes called "success" and "failure". In each trial the probability of success is p and of failure 

is (1 − p). We are observing this sequence until a predefined number r of failures has occurred. 

Then the random number of successes we have seen, X, will have the negative binomial 

(or Pascal) distribution:  

The Normal Distribution 

A random variable X whose distribution has the shape of a normal curve is called a normal 

random variable.  

Properties of a Normal Distribution 

• Bell-shaped  

• Symmetric about mean  

• Continuous  

• Never touches the x-axis  

• Total area under curve is 1.00  

• Approximately 68% lies within 1 standard deviation of the mean, 95% within 2 standard 

deviations, and 99.7% within 3 standard deviations of the mean. This is the Empirical 

Rule mentioned earlier.  

• Data values represented by x which has mean mu and standard deviation sigma.  

• Probability Function given by  



 

Normal Probabilities 

Computing Normal Probabilities 

There are several different situations that can arise when asked to find normal probabilities.  

Situation Instructions 

Between zero and  

any number 

Look up the area in the table 

Between two positives, or 

Between two negatives 

Look up both areas in the table and subtract the smaller 

from the larger. 

Between a negative and 

a positive 

Look up both areas in the table and add them together 

Less than a negative, or 

Greater than a positive 

Look up the area in the table and subtract from 0.5000 

Greater than a negative, or 

Less than a positive 

Look up the area in the table and add to 0.5000 

This can be shortened into two rules.  

1. If there is only one z-score given, use 0.5000 for the second area, otherwise look up both 

z-scores in the table  

2. If the two numbers are the same sign, then subtract; if they are different signs, then add. 

If there is only one z-score, then use the inequality to determine the second sign (< is 

negative, and > is positive).  



 

 

Central Limit Theorem 

As n gets large (n > 30), the shape of the sampling distribution will become more and more 

like a normal distribution, irrespective of the shape of the parent population. The theorem 

which explains this sort of relationship between the shape of the population distribution and 

the sampling distribution of the mean is known as the central limit theorem. This theorem is 

by far the most important theorem in statistical inference. It assures that the sampling 

distribution of the mean approaches normal distribtion as the sample size increases. In formal 

terms, we may say that the central limit theorem states that “the distribution of means of 

random samples taken from a population having mean µ and finite variance σ2
 approaches 

the normal distribution with mean µ and variance σ2
 /n as n goes to infinity. The significance 

of the central limit theorem lies in the fact that it permits us to use sample statistics to make 

inferences about population parameters without knowing anything about the shape of the 

frequency distribution of that population other than what we can get from the sample. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Unit II: Sampling 

Difference between Census and Sampling 

 

Census and sampling are two methods of collecting survey data about the population that are 

used by many countries. Census refers to the quantitative research method, in which all the 

members of the population are enumerated. On the other hand, the sampling is the widely used 

method, in statistical testing, wherein a data set is selected from the large population, which 

represents the entire group. 



 

Census implies complete enumeration of the study objects, whereas Sampling connotes 

enumeration of the subgroup of elements chosen for participation. These two survey methods are 

often contrasted with each other, and so this article makes an attempt to clear the differences 

between census and sampling, in detail; Have a look. 

Content: Census Vs Sampling 

Comparison Chart 

BASIS FOR 

COMPARISON 
CENSUS SAMPLING 

Meaning A systematic method that collects 

and records the data about the 

members of the population is 

called Census. 

Sampling refers to a portion of the 

population selected to represent the 

entire group, in all its 

characteristics. 

Enumeration Complete Partial 

Study of Each and every unit of the 

population. 

Only a handful of units of the 

population. 

Time required It is a time consuming process. It is a fast process. 

Cost Expensive method Economical method 

Results Reliable and accurate Less reliable and accurate, due to 

the margin of error in the data 

collected. 



 

BASIS FOR 

COMPARISON 
CENSUS SAMPLING 

Error Not present. Depends on the size of the 

population 

Appropriate for Population of heterogeneous 

nature. 

Population of homogeneous nature 

Sample Selection Methods 

Non-probability sampling: 

 Non-probability sampling is that sampling procedure which does not afford any basis for 

estimating the probability that each item in the population has of being included in the sample. 

Non-probability sampling is also known by different names such as deliberate sampling, 

purposive sampling and judgement sampling. In this type of sampling, items for the sample are 

selected deliberately by the researcher; his choice concerning the items remains supreme. In 

other words, under non-probability sampling the organisers of the inquiry purposively choose the 

particular units of the universe for constituting a sample on the basis that the small mass that they 

so select out of a huge one will be typical or representative of the whole. For instance, if 

economic conditions of people living in a state are to be studied, a few towns and villages may 

be purposively selected for intensive study on the principle that they can be representative of the 

entire state. Thus, the judgement of the organisers of the study plays an important part in this 

sampling design. In such a design, personal element has a great chance of entering into the 

selection of the sample.  

Probability sampling  

Sample has a known probability of being selected. 



 

In probability sampling it is possible to both determine which sampling units belong to which 

sample and the probability that each sample will be selected. The following sampling 

methods are examples of probability sampling: 

• Simple Random Sampling (SRS) 

• Stratified Sampling 

• Cluster Sampling 

• Systematic Sampling 

• Multistage Sampling  

 Probability sampling is also known as ‘random sampling’ or ‘chance sampling’. Under this 

sampling design, every item of the universe has an equal chance of inclusion in the sample. It is, 

so to say, a lottery method in which individual units are picked up from the whole group not 

deliberately but by some mechanical process. Here it is blind chance alone that determines 

whether one item or the other is selected. The results obtained from probability or random 

sampling can be assured in terms of probability i.e., we can measure the errors of estimation or 

the significance of results obtained from a random sample, and this fact brings out the superiority 

of random sampling design over the deliberate sampling design. Random sampling ensures the 

law of Statistical Regularity which states that if on an average the sample chosen is a random 

one, the sample will have the same composition and characteristics as the universe. This is the 

reason why random sampling is considered as the best technique of selecting a representative 

sample. Random sampling from a finite population refers to that method of sample selection 

which gives each possible sample combination an equal probability of being picked up and each 

item in the entire population to have an equal chance of being included in the sample.  

Sampling with Replacement and Sampling without Replacement 

Sampling with replacement: 

Consider a population of potato sacks, each of which has either 12, 13, 14, 15, 16, 17, or 18 

potatoes, and all the values are equally likely. Suppose that, in this population, there is exactly 

one sack with each number. So the whole population has seven sacks. If I sample two with 



 

replacement, then I first pick one (say 14). I had a 1/7 probability of choosing that one. Then I 

replace it. Then I pick another. Every one of them still has 1/7 probability of being chosen. And 

there are exactly 49 different possibilities here (assuming we distinguish between the first and 

second.) They are: (12,12), (12,13), (12, 14), (12,15), (12,16), (12,17), (12,18), (13,12), (13,13), 

(13,14), etc. 

Sampling without replacement: 

Consider the same population of potato sacks, each of which has either 12, 13, 14, 15, 16, 17, or 

18 potatoes, and all the values are equally likely. Suppose that, in this population, there is exactly 

one sack with each number. So the whole population has seven sacks. If I sample two without 

replacement, then I first pick one (say 14). I had a 1/7 probability of choosing that one. Then I 

pick another. At this point, there are only six possibilities: 12, 13, 15, 16, 17, and 18. So there are 

only 42 different possibilities here (again assuming that we distinguish between the first and the 

second.) They are: (12,13), (12,14), (12,15), (12,16), (12,17), (12,18), (13,12), (13,14), (13,15), 

etc. 

What's the Difference? 

When we sample with replacement, the two sample values are independent. Practically, this 

means that what we get on the first one doesn't affect what we get on the second. 

Mathematically, this means that the covariance between the two is zero. 

In sampling without replacement, the two sample values aren't independent. Practically, this 

means that what we got on the for the first one affects what we can get for the second one. 

Mathematically, this means that the covariance between the two isn't zero. That complicates the 

computations. In particular, if we have a SRS (simple random sample) without replacement, 

from a population with variance , then the covariance of two of the different sample values 

is , where N is the population size.  



 

Systematic Sampling 

In some instances, the most practical way of sampling is to select every ith item on a list. 

Sampling of this type is known as systematic sampling. An element of randomness is introduced 

into this kind of sampling by using random numbers to pick up the unit with which to start. For 

instance, if a 4 per cent sample is desired, the first item would be selected randomly from the 

first twenty-five and thereafter every 25th item would automatically be included in the sample. 

Thus, in systematic sampling only the first unit is selected randomly and the remaining units of 

the sample are selected at fixed intervals. It is an easier and less costlier method of sampling and 

can be conveniently used even in case of large populations. But there are certain dangers too in 

using this type of sampling. If there is a hidden periodicity in the population, systematic 

sampling will prove to be an inefficient method of sampling. For instance, every 25th item 

produced by a certain production process is defective. If we are to select a 4% sample of the 

items of this process in a systematic manner, we would either get all defective items or all good 

items in our sample depending upon the random starting position. If all elements of the universe 

are ordered in a manner representative of the total population, i.e., the population list is in 

random order, systematic sampling is considered equivalent to random sampling. But if this is 

not so, then the results of such sampling may, at times, not be very reliable. In practice, 

systematic sampling is used when lists of population are available and they are of considerable 

length. 

Properties of Estimates and Their Variances 

The sample statistic is calculated from the sample data and the population parameter is inferred 

(or estimated) from this sample statistic. Let me say that again: Statistics are calculated, 

parameters are estimated. The estimation of the population parameter is done from the 

sample statistic. There are two types of estimates: Point Estimates and Interval Estimates. 

In most statistical research studies, population parameters are usually unknown and have 

to be estimated from a sample. As such the methods for estimating the population 

parameters assume an important role in statistical anlysis. The random variables (such as 

X s and σ2 ) used to estimate population parameters, such as µ σ and p 2 are 



 

conventionally called as ‘estimators’, while specific values of these (such as X = 105 or σ 

s 2 = 2144 . ) are referred to as ‘estimates’ of the population parameters. The estimate of 

a population parameter may be one single value or it could be a range of values. In the 

former case it is referred as point estimate, whereas in the latter case it is termed as 

interval estimate. 

A good estimator must satisfy three conditions:  

• Unbiased: The expected value of the estimator must be equal to the mean of the 

parameter  

• Consistent: The value of the estimator approaches the value of the parameter as the 

sample size increases  

• Relatively Efficient: The estimator has the smallest variance of all estimators which could 

be used. 

 

 

 

Unit III: Point and Interval Estimation 

Introduction to Estimation 

One area of concern in inferential statistics is the estimation of the population parameter from the 

sample statistic. It is important to realize the order here. The sample statistic is calculated from 

the sample data and the population parameter is inferred (or estimated) from this sample statistic. 

Let me say that again: Statistics are calculated, parameters are estimated.  

We talked about problems of obtaining the value of the parameter earlier in the course when we 

talked about sampling techniques.  



 

Another area of inferential statistics is sample size determination. That is, how large of a sample 

should be taken to make an accurate estimation. In these cases, the statistics can't be used since 

the sample hasn't been taken yet.  

 

Definitions 

Confidence Interval  

An interval estimate with a specific level of confidence  

Confidence Level  

The percent of the time the true mean will lie in the interval estimate given.  

Consistent Estimator  

An estimator which gets closer to the value of the parameter as the sample size increases.  

Degrees of Freedom  

The number of data values which are allowed to vary once a statistic has been 

determined.  

Estimator  

A sample statistic which is used to estimate a population parameter. It must be unbiased, 

consistent, and relatively efficient.  

Interval Estimate  

A range of values used to estimate a parameter.  

Maximum Error of the Estimate  

The maximum difference between the point estimate and the actual parameter. The 

Maximum Error of the Estimate is 0.5 the width of the confidence interval for means and 

proportions.  

Point Estimate  

A single value used to estimate a parameter.  

Relatively Efficient Estimator  

The estimator for a parameter with the smallest variance.  

T distribution  



 

A distribution used when the population variance is unknown.  

Unbiased Estimator  

An estimator whose expected value is the mean of the parameter being estimated.  

 

Point Estimation  

Point estimation involves the use of sample data to calculate a single value (known as 

a statistic) which is to serve as a "best guess" or "best estimate" of an unknown (fixed or random) 

population parameter. It is the process of finding an approximate value of some parameter—such 

as the mean (average)—of a population from random samples of the population.  

Properties of an estimator: 

It is desirable for a point estimate to be:  

(1) Consistent. The larger the sample size, the more accurate the estimate. 

 (2) Unbiased. The expectation of the observed values of many samples (“average observation 

value”) equals the corresponding population parameter. For example, the sample mean is an 

unbiased estimator for the population mean.  

(3) Most efficient or best unbiased—of all consistent, unbiased estimates, the one possessing the 

smallest variance (a measure of the amount of dispersion away from the estimate). In other 

words, the estimator that varies least from sample to sample. This generally depends on the 

particular distribution of the population. 

   

Cramer Rao Inequality 

In estimation theory and statistics, the Cramér–Rao bound (CRB), Cramér–Rao lower bound 

(CRLB), Cramér–Rao inequality, Frechet-Darmois-Cramér-Rao inequality, or information 

inequality expresses a lower bound on the variance of estimators of a deterministic (fixed, 

though unknown) parameter. This term is named in honor of Harald Cramér, Calyampudi 

Radhakrishna Rao, Maurice Frechet and Georges Darmois all of whom independently derived 

this limit to statistical precision in the 1940s.  



 

In its simplest form, the bound states that the variance of any unbiased estimator is at least as 

high as the inverse of the Fisher information. 

The Cramer-Rao Inequality provides a lower bound for the variance of an unbiased estimator of 

a parameter. It allows us to conclude that an unbiased estimator is a minimum variance unbiased 

estimator for a parameter. Cramer Rao inequality provides lower bound for the estimation error 

variance. Minimum attainable variance is often larger than CRLB. We need to know the 

probability density function to evaluate CRLB. Often we don’t know this information and cannot 

evaluate this bound. If the data is multivariate Gaussian or with known distribution, we can 

evaluate it. If the estimator reaches the CRLB, it is called efficient. MVUE (minimum 

variance bound unbiased estimator ) may or may not be efficient. If it is not, we have to use other 

tools than CRLB to find it. 

Methods of Estimation and their Properties: 

• Maximum likelihood estimators. 

• Bayes estimators. 

• Method of moments estimators. 

• Cramér–Rao bound. 

• Minimum mean squared error (MMSE), also known as Bayes least squared error (BLSE) 

• Maximum a posteriori (MAP) 

• Minimum variance unbiased estimator (MVUE) 

 

Methods of Moment Estimator: 

• Advantage: simplest approach for constructing an estimator.  

• Disadvantage: usually are not the “best” estimators possible.  

• Principle: Equate the kth population moment E[Xk] with the kth sample moment and solve for 

the unknown parameter ! 1 n Xi k n. 

Maximum likelihood estimators 

• Before an experiment is performed the outcome is unknown. Probability allows us to predict 

unknown outcomes based on known parameters: ! P(Data |") • For example: ! P(x | n, p) = ( ) p x 

(1" p) n n"x 



 

In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of 

a statistical model given observations, by finding the parameter values that maximize 

the likelihood of making the observations given the parameters. MLE can be seen as a special 

case of the maximum a posteriori estimation (MAP) that assumes a uniform prior distribution of 

the parameters, or as a variant of the MAP that ignores the prior and which therefore 

is unregularized. 

The method of maximum likelihood corresponds to many well-known estimation methods in 

statistics. For example, one may be interested in the heights of adult female penguins, but is 

unable to measure the height of every single penguin in a population due to cost or time 

constraints. Assuming that the heights are normally distributed with some 

unknown mean and variance, the mean and variance can be estimated with MLE while only 

knowing the heights of some sample of the overall population. MLE would accomplish this by 

taking the mean and variance as parameters and finding particular parametric values that make 

the observed results the most probable given the model. 

In general, for a fixed set of data and underlying statistical model, the method of maximum 

likelihood selects the set of values of the model parameters that maximizes the likelihood 

function. Intuitively, this maximizes the "agreement" of the selected model with the observed 

data, and for discrete random variables it indeed maximizes the probability of the observed data 

under the resulting distribution. Maximum likelihood estimation gives a unified approach to 

estimation, which is well-defined in the case of the normal distribution and many other problems. 

 

In statistics, maximum likelihood estimation (MLE) is a method 

of estimating the parameters of a statistical model given observations, by finding the parameter 

values that maximize the likelihood of making the observations given the parameters. MLE can 

be seen as a special case of the maximum a posteriori estimation (MAP) that assumes 

a uniform prior distribution of the parameters, or as a variant of the MAP that ignores the prior 

and which therefore is unregularized. 

 

Least Squares Method: 



 

The method of least squares is a standard approach in regression analysis to approximate the 

solution of overdetermined systems, i.e., sets of equations in which there are more equations than 

unknowns. "Least squares" means that the overall solution minimizes the sum of the squares of 

the residuals made in the results of every single equation. 

The most important application is in data fitting. The best fit in the least-squares sense 

minimizes the sum of squared residuals (a residual being: the difference between an observed 

value, and the fitted value provided by a model). When the problem has substantial uncertainties 

in the independent variable (the x variable), then simple regression and least-squares methods 

have problems; in such cases, the methodology required for fitting errors-in-variables 

models may be considered instead of that for least squares. 

Least-squares problems fall into two categories: linear or ordinary least squaresand nonlinear 

least squares, depending on whether or not the residuals are linear in all unknowns. The linear 

least-squares problem occurs in statistical regression analysis; it has a closed-form solution. The 

nonlinear problem is usually solved by iterative refinement; at each iteration the system is 

approximated by a linear one, and thus the core calculation is similar in both cases. 

 

Interval Estimation 

Interval estimates provide a range of values for a parameter value, within which we have a stated 

degree of confidence that the parameter lies. 

 

Confidence interval:  

An interval of plausible values for the parameter being estimated, where degree of plausibility 

specifided by a “confidence level”. The confidence level is the frequency (i.e., the proportion) of 

possible confidence intervals that contain the true value of their corresponding parameter. In 

other words, if confidence intervals are constructed using a given confidence level in an infinite 

number of independent experiments, the proportion of those intervals that contain the true value 

of the parameter will match the confidence level.  



 

Confidence intervals consist of a range of values (interval) that act as good estimates of the 

unknown population parameter. However, the interval computed from a particular sample does 

not necessarily include the true value of the parameter. Since the observed data are random 

samples from the true population, the confidence interval obtained from the data is also random. 

If a corresponding hypothesis test is performed, the confidence level is the complement of the 

level of significance; for example, a 95% confidence interval reflects a significance level of 0.05. 

If it is hypothesized that a true parameter value is 0 but the 95% confidence interval does not 

contain 0, then the estimate is significantly different from zero at the 5% significance level. 

The desired level of confidence is set by the researcher (not determined by data). Most 

commonly, the 95% confidence level is used. However, other confidence levels can be used, for 

example, 90% and 99%. 

Factors affecting the width of the confidence interval include the size of the sample, the 

confidence level, and the variability in the sample. A larger sample size normally will lead to a 

better estimate of the population parameter. 

 

 

 

 

 

 

 

 



 

Unit IV: Hypothesis Testing 

 

Hypothesis 

A statistical hypothesis or simply hypothesis is an assumption or claim either about the 

parameters of populations (single parameter value or several values of parameter) or about the 

population (from of an entire probability distribution). Any statement concerning a parameter is a 

hypothesis about a parameter. 

Example 1: The claim µ = Rs. 10,000, where µ is the average salary of a newly graduated 

student is an example of hypothesis. 

Hypothesis Testing 

Whenever we do hypothesis testing, we formulate two opposing or contradictory hypothesis. In 

example 1, µ = 10,000 and µ ≠ 10,000 are two opposing statements based on the sample 

findings; we decide which of two hypothesis is correct. The hypothesis that we test based on the 

initial assumption that it is true is called null hypothesis. It is denoted by Ho. It is also called the 

testable proposition. The opposing or the contradictory hypothesis is the alternative hypothesis. 

It is also the counter proposition to null hypothesis and is denoted by H1. 

Type I & Type II Error 

 State of Nature 

Decision H0 True H0 False 

Reject H0 Type I Error 

alpha 

Correct Assessment 

Fail to reject H0 Correct Assessment Type II Error 



 

beta 

 

Type I Error: Rejecting Null hypothesis when it is true. 

Type II Error: Accepting Null hypothesis when it is false. 

Which of the two errors is more serious? Type I or Type II ?  

Since Type I is the more serious error (usually), that is the one we concentrate on. We usually 

pick alpha to be very small (0.05, 0.01). Note: alpha is not a Type I error. Alpha is the 

probability of committing a Type I error. Likewise beta is the probability of committing a Type II 

error.  

Conclusions 

Conclusions are sentence answers which include whether there is enough evidence or not (based 

on the decision), the level of significance, and whether the original claim is supported or 

rejected.  

Conclusions are based on the original claim, which may be the null or alternative hypotheses. 

The decisions are always based on the null hypothesis  

 Original Claim 

 

Decision 

H0 

"REJECT" 

H1 

"SUPPORT" 

Reject H0 

"SUFFICIENT" 

There is sufficient evidence 

at the alpha level of 

There is sufficient evidence at the 

alpha level of significance to support 



 

significance to reject the 

claim  

the claim  

Fail to reject H0 

"INSUFFICIENT" 

There is insufficient 

evidence at the alpha level 

of significance to reject the 

claim  

There is insufficient evidence at the 

alpha level of significance to support 

the claim  

 

Definitions 

Null Hypothesis ( H0 )  

Statement of zero or no change. If the original claim includes equality (<=, =, or >=), it is 

the null hypothesis. If the original claim does not include equality (<, not equal, >) then 

the null hypothesis is the complement of the original claim. The null hypothesis always 

includes the equal sign. The decision is based on the null hypothesis.  

Alternative Hypothesis (H1 or Ha )  

Statement which is true if the null hypothesis is false. The type of test (left, right, or two-

tail) is based on the alternative hypothesis.  

Type I error  

Rejecting the null hypothesis when it is true (saying false when true). Usually the more 

serious error.  

Type II error  

Failing to reject the null hypothesis when it is false (saying true when false).  

 

alpha  

Probability of committing a Type I error.  

beta  

Probability of committing a Type II error.  



 

Test statistic  

Sample statistic used to decide whether to reject or fail to reject the null hypothesis.  

Critical region  

Set of all values which would cause us to reject H0  

Critical value(s)  

The value(s) which separate the critical region from the non-critical region. The critical 

values are determined independently of the sample statistics.  

Significance level ( alpha )  

The probability of rejecting the null hypothesis when it is true. alpha = 0.05 and alpha = 0.01 are 

common. If no level of significance is given, use alpha = 0.05. The level of significance is the 

complement of the level of confidence in estimation. 

Decision 

A statement based upon the null hypothesis. It is either "reject the null hypothesis" or 

"fail to reject the null hypothesis". We will never accept the null hypothesis.  

Conclusion  

A statement which indicates the level of evidence (sufficient or insufficient), at what 

level of significance, and whether the original claim is rejected (null) or supported 

(alternative).  

We outline the tests of hypothesis by the following steps : 

1. Formulate Ho and Ha; and specify α.  

2. Give the formula for computing the value of test statistics. 

3.  Determine the rejection region for the specified α. 

4.  Compute the value of test statistic using the sample data.  

5.  Check whether the value of test statistic falls in the rejection region. Accordingly, decide 

whether Ho should be rejected and conclude. 

 



 

The Level Of Significance:  

This is a very important concept in the context of hypothesis testing. It is always some 

percentage (usually 5%) which should be chosen with great care, thought and reason. In case we 

take the significance level at 5 per cent, then this implies that H0 will be rejected when the 

sampling result (i.e., observed evidence) has a less than 0.05 probability of occurring if H0 is 

true. In other words, the 5 per cent level of significance means that researcher is willing to take 

as much as a 5 per cent risk of rejecting the null hypothesis when it (H0 ) happens to be true. 

Thus the significance level is the maximum value of the probability of rejecting H0 when it is 

true and is usually determined in advance before testing the hypothesis. 

Measuring the Power of a Hypothesis Test 

As stated above we may commit Type I and Type II errors while testing a hypothesis. The 

probability of Type I error is denoted as α (the significance level of the test) and the probability 

of Type II error is referred to as β . Usually the significance level of a test is assigned in advance 

and once we decide it, there is nothing else we can do about α. But what can we say about β? We 

all know that hypothesis test cannot be foolproof; sometimes the test does not reject H0 when it 

happens to be a false one and this way a Type II error is made. But we would certainly like that β 

(the probability of accepting H0 when H0 is not true) to be as small as possible. Alternatively, 

we would like that 1 – β (the probability of rejecting H0 when H0 is not true) to be as large as 

possible. If 1 – β is very much nearer to unity (i.e., nearer to 1.0), we can infer that the test is 

working quite well, meaning thereby that the test is rejecting H0 when it is not true and if 1 – β is 

very much nearer to 0.0, then we infer that the test is poorly working, meaning thereby that it is 

not rejecting H0 when H0 is not true. Accordingly 1 – β value is the measure of how well the test 

is working or what is technically described as the power of the test. In case we plot the values of 

1 – β for each possible value of the population parameter (say µ , the true population mean) for 

which the H0 is not true (alternatively the Ha is true), the resulting curve is known as the power 

curve associated with the given test. Thus power curve of a hypothesis test is the curve that 

shows the conditional probability of rejecting H0 as a function of the population parameter and 

size of the sample. The function defining this curve is known as the power function. In other 



 

words, the power function of a test is that function defined for all values of the parameter(s) 

which yields the probability that H0 is rejected and the value of the power function at a specific 

parameter point is called the power of the test at that point. As the population parameter gets 

closer and closer to hypothesised value of the population parameter, the power of the test (i.e., 1 

– β) must get closer and closer to the probability of rejecting H0 when the population parameter 

is exactly equal to hypothesised value of the parameter. We know that this probability is simply 

the significance level of the test, and as such the power curve of a test terminates at a point that 

lies at a height of α (the significance level) directly over the population parameter. Closely 

related to the power function, there is another function which is known as the operating 

characteristic function which shows the conditional probability of accepting H0 for all values of 

population parameter(s) for a given sample size, whether or not the decision happens to be a 

correct one. If power function is represented as H and operating characteristic function as L, then 

we have L = 1 – H. However, one needs only one of these two functions for any decision rule in 

the context of testing hypotheses. 

P-Value Approach 

The P-Value Approach, short for Probability Value, approaches hypothesis testing from a 

different manner. Instead of comparing z-scores or t-scores as in the classical approach, you're 

comparing probabilities, or areas.  

The level of significance (alpha) is the area in the critical region. That is, the area in the tails to 

the right or left of the critical values.  

The p-value is the area to the right or left of the test statistic. If it is a two tail test, then look up 

the probability in one tail and double it.  

If the test statistic is in the critical region, then the p-value will be less than the level of 

significance. It does not matter whether it is a left tail, right tail, or two tail test. This rule always 

holds.  

Reject the null hypothesis if the p-value is less than the level of significance. 



 

You will fail to reject the null hypothesis if the p-value is greater than or equal to the level of 

significance.  

The p-value approach is best suited for the normal distribution when doing calculations by hand. 

However, many statistical packages will give the p-value but not the critical value. This is 

because it is easier for a computer or calculator to find the probability than it is to find the critical 

value.  

Another benefit of the p-value is that the statistician immediately knows at what level the testing 

becomes significant. That is, a p-value of 0.06 would be rejected at an 0.10 level of significance, 

but it would fail to reject at an 0.05 level of significance. Warning: Do not decide on the level of 

significance after calculating the test statistic and finding the p-value.  

Here is a proportion to help you keep the order straight. Any proportion equivalent to the 

following statement is correct.  

The test statistic is to the p-value as the critical value is to the level of significance. 

 

Hypothesis Testing Of Means  

Mean of the population can be tested presuming different situations such as the population may 

be normal or other than normal, it may be finite or infinite, sample size may be large or small, 

variance of the population may be known or unknown and the alternative hypothesis may be 

two-sided or one sided. Our testing technique will differ in different situations. We may consider 

some of the important situations. 

1.  Population normal, population infinite, sample size may be large or small but variance of 

the population is known, Ha may be one-sided or two-sided: In such a situation z-test is 

used for testing hypothesis of mean. 



 

2. Population normal, population finite, sample size may be large or small but variance of 

the population is known, Ha may be one-sided or two-sided: In such a situation z-test is 

used.  

3. Population normal, population infinite, sample size small and variance of the population 

unknown, Ha may be one-sided or two-sided: In such a situation t-test is used. 

4. Population normal, population finite, sample size small and variance of the population 

unknown, and Ha may be one-sided or two-sided: In such a situation t-test is used 

5. Population may not be normal but sample size is large, variance of the population may be 

known or unknown, and Ha may be one-sided or two-sided: In such a situation we use z-

test. 

Hypothesis Testing For Comparing a Variance to Some Hypothesised Population Variance 

 The test we use for comparing a sample variance to some theoretical or hypothesised variance of 

population is different than z-test or the t-test. The test we use for this purpose is known as chi 

square test and the test statistic symbolised as χ2 , known as the chi-square value. Then by 

comparing the calculated value of χ2 with its table value for (n – 1) degrees of freedom at a 

given level of significance, we may either accept H0 or reject it. If the calculated value of χ2 is 

equal to or less than the table value, the null hypothesis is accepted; otherwise the null 

hypothesis is rejected. This test is based on chi-square distribution which is not symmetrical and 

all the values happen to be positive; one must simply know the degrees of freedom for using 

such a distribution. 

Testing the Equality of Variances of Two Normal Populations 

 When we want to test the equality of variances of two normal populations, we make use of F-

test based on F-distribution.  

When we use the F-test, we presume that 

(i) the populations are normal;  



 

(ii) samples have been drawn randomly; 

 (iii) observations are independent; and 

 (iv) there is no measurement error.  

The object of F-test is to test the hypothesis whether the two samples are from the same normal 

population with equal variance or from two normal populations with equal variances. F-test was 

initially used to verify the hypothesis of equality between two variances, but is now mostly used 

in the context of analysis of variance. 

The Basic Principle Of ANOVA  

The basic principle of ANOVA is to test for differences among the means of the populations by 

examining the amount of variation within each of these samples, relative to the amount of 

variation between the samples. In terms of variation within the given population, it is assumed 

that the values of (Xij) differ from the mean of this population only because of random effects 

i.e., there are influences on (Xij) which are unexplainable, whereas in examining differences 

between populations we assume that the difference between the mean of the jth population and 

the grand mean is attributable to what is called a ‘specific factor’ or what is technically 

described as treatment effect. Thus while using ANOVA, we assume that each of the samples is 

drawn from a normal population and that each of these populations has the same variance. We 

also assume that all factors other than the one or more being tested are effectively controlled. 

This, in other words, means that we assume the absence of many factors that might affect our 

conclusions concerning the factor(s) to be studied. In short, we have to make two estimates of 

population variance viz., one based on between samples variance and the other based on within 

samples variance. Then the said two estimates of population variance are compared with F-test, 

wherein we work out. 

F = Estimate of population variance based on between samples variance divided by  Estimate of        

population variance based on within samples variance 



 

This value of F is to be compared to the F-limit for given degrees of freedom. If the F value we 

work out is equal or exceeds the F-limit value, we may say that there are significant differences 

between the sample means. 

 

 

 

 

 

 

 

  

 

  


